Problem 1.12

Show that a substitution identical to that used in reduction of order $y(x)=u(x) f(x)$ can be used to eliminate the $y^{(n-1)}(x)$ term from an n th-order homogeneous linear differential equation. (When the one-derivative term has been eliminated from a linear second-order differential equation, the resulting equation is a Schrödinger equation.)

Solution

The general form of an n th-order homogeneous linear differential equation is the following.

$$
\begin{equation*}
y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots+p_{0}(x) y=0 \tag{1}
\end{equation*}
$$

Make the given substitution,

$$
\begin{equation*}
y(x)=u(x) f(x) \tag{2}
\end{equation*}
$$

We now have to write the derivatives of y in terms of the new variable u. Take the first derivative.

$$
\begin{equation*}
y^{\prime}(x)=u^{\prime}(x) f(x)+u(x) f^{\prime}(x) \tag{3}
\end{equation*}
$$

Take the second derivative.

$$
\begin{align*}
y^{\prime \prime}(x) & =u^{\prime \prime}(x) f(x)+u^{\prime}(x) f^{\prime}(x)+u^{\prime}(x) f^{\prime}(x)+u(x) f^{\prime \prime}(x) \\
& =u^{\prime \prime}(x) f(x)+2 u^{\prime}(x) f^{\prime}(x)+u(x) f^{\prime \prime}(x) \tag{4}
\end{align*}
$$

Take the third derivative.

$$
\begin{aligned}
y^{\prime \prime \prime}(x) & =u^{\prime \prime \prime}(x) f(x)+u^{\prime \prime}(x) f^{\prime}(x)+2 u^{\prime \prime}(x) f^{\prime}(x)+2 u^{\prime}(x) f^{\prime \prime}(x)+u^{\prime}(x) f^{\prime \prime}(x)+u(x) f^{\prime \prime \prime}(x) \\
& =u^{\prime \prime \prime}(x) f(x)+3 u^{\prime \prime}(x) f^{\prime}(x)+3 u^{\prime}(x) f^{\prime \prime}(x)+u(x) f^{\prime \prime \prime}(x)
\end{aligned}
$$

From these derivatives we can observe a pattern and figure out what $y^{(n-1)}$ and $y^{(n)}$ are. The formula is very reminiscent to that of the binomial theorem.

$$
y^{(n)}(x)=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} u^{(n-k)}(x) f^{(k)}(x)
$$

The term with the factorials gives us the numbers of Pascal's triangle. To get the formula for $y^{(n-1)}(x)$, just replace n with $n-1$ everywhere in the previous formula.

$$
y^{(n-1)}(x)=\sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} u^{(n-1-k)}(x) f^{(k)}(x)
$$

Finally, we can plug these expressions into equation (1).

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} u^{(n-k)}(x) f^{(k)}(x)+p_{n-1}(x) \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} u^{(n-1-k)}(x) f^{(k)}(x) \\
&+\cdots+p_{0}(x) u(x) f(x)=0
\end{aligned}
$$

Since the new variable is u, we want $u^{(n-1)}$ to be eliminated now. The $u^{(n-1)}$ term is obtained from the first sum when $k=1$ and from the second sum when $k=0$. We don't care about the remaining terms, $u^{(n)}(x), u^{(n-2)}(x), u^{(n-3)}(x)$, and so on.

$$
n u^{(n-1)}(x) f^{\prime}(x)+p_{n-1}(x) u^{(n-1)}(x) f(x)+\cdots=0
$$

Factor out $u^{(n-1)}(x)$ from these two terms.

$$
u^{(n-1)}(x)\left[n f^{\prime}(x)+p_{n-1}(x) f(x)\right]+\cdots=0
$$

From this equation we can see that in order for the $u^{(n-1)}(x)$ term to disappear, we should choose $f(x)$ such that it satisfies

$$
n f^{\prime}(x)+p_{n-1}(x) f(x)=0 .
$$

This is a first-order ODE that can be solved with separation of variables.

$$
n \frac{d f}{d x}=-p_{n-1}(x) f(x)
$$

Separate variables.

$$
\frac{d f}{f}=-\frac{p_{n-1}(x)}{n} d x
$$

Integrate both sides.

$$
\ln |f|=-\frac{1}{n} \int^{x} p_{n-1}(s) d s+C
$$

Exponentiate both sides.

$$
|f|=e^{-\frac{1}{n} \int^{x} p_{n-1}(s) d s} e^{C}
$$

Introduce \pm on the right side to remove the absolute value sign on the left side.

$$
f(x)= \pm e^{C} e^{-\frac{1}{n} \int^{x} p_{n-1}(s) d s}
$$

Use a new arbitrary constant A.

$$
f(x)=A e^{-\frac{1}{n} \int^{x} p_{n-1}(s) d s}
$$

Therefore, the substitution,

$$
y(x)=u(x) e^{-\frac{1}{n} \int^{x} p_{n-1}(s) d s},
$$

can be used to eliminate the $y^{(n-1)}(x)$ term from an n th-order homogeneous linear differential equation.

Example: Schrödinger Equations

When $n=2$, equation (1) reduces to a general second-order linear homogeneous ODE.

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{0}(x) y=0
$$

If we make the prescribed substitution,

$$
y(x)=u(x) f(x),
$$

then we can use equations (2) and (3) and (4) to write the ODE in terms of u.

$$
u^{\prime \prime}(x) f(x)+2 u^{\prime}(x) f^{\prime}(x)+u(x) f^{\prime \prime}(x)+p_{1}(x)\left[u^{\prime}(x) f(x)+u(x) f^{\prime}(x)\right]+p_{0}(x) u(x) f(x)
$$

Factor the left side like so.

$$
u^{\prime \prime}(x) f(x)+u^{\prime}(x)\left[2 f^{\prime}(x)+p_{1}(x) f(x)\right]+u(x)\left[f^{\prime \prime}(x)+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)\right]=0
$$

For $u^{\prime}(x)$ to disappear, we require that $f(x)$ satisfies the ODE,

$$
2 f^{\prime}(x)+p_{1}(x) f(x)=0,
$$

which is first-order and can be solved with separation of variables.

$$
2 \frac{d f}{d x}=-p_{1}(x) f(x)
$$

Separate variables.

$$
\frac{d f}{f}=-\frac{p_{1}(x)}{2} d x
$$

Integrate both sides.

$$
\ln |f|=-\frac{1}{2} \int^{x} p_{1}(s) d s+C
$$

Exponentiate both sides.

$$
|f|=e^{-\frac{1}{2} \int^{x} p_{1}(s) d s} e^{C}
$$

Introduce \pm on the right side to remove the absolute value sign on the left side.

$$
f(x)= \pm e^{C} e^{-\frac{1}{2} \int^{x} p_{1}(s) d s}
$$

Use a new arbitrary constant A.

$$
f(x)=A e^{-\frac{1}{2} \int^{x} p_{1}(s) d s}
$$

This is the function we should use for $f(x)$ in equation (2) to eliminate the first derivative in the ODE.

